Проценты заслуживают отдельного внимания, несмотря на то, что занимается ими репетитор по математике не часто. В 6 классе изучение этой темы «благополучно» заканчивается и вплоть до 11 класса не возобновляется. После такого вакуума, особенно когда подготовка к ЕГЭ по математике принимает пожарный характер, преподавателю бывает очень сложно собрать ученика. Масла в огонь добавляют хитрые условия задач, мешающие вести соответствующую классификацию по ЕГЭ вариантам. Поэтому все внимание репетитора математики приковывается к методике работы с маленькими учениками, о которой и поговорим.
Стоит напомнить, что проценты изучаются по разным учебникам в разное время. В Петерсоне, например, они впервые возникают аж в 4 классе, а в Виленкине только в конце пятого. Разные способности учеников диктуют репетитору по математике разные методы работы с темой, разную скорость движения по типовым задачам, а отличия в программах обязывают еще и придерживаться разной последовательности изложения. Поэтому писать о практических приемах работы репетитора непросто. Я не хотел бы в статье затрагивать все пути, по которым репетитор мог бы пойти. Все зависит от ситуации по каждому конкретному ученику. Опишу один из возможных подходов к работе с темой.
Практика показывает, что детям тяжело дается переключение на новую тему, если она не связана с каким-то прочно усвоенным навыком или зрительным образом. Репетитор по математике, как представляется мне, должен постараться максимально сгладить этот переход и так подстроиться методически, чтобы у ребенка не возникало ощущения этой новизны.
Что такое задачи на проценты? Те же самые задачи на дроби. И если ребенок с последними справляется, то почему бы репетитору не опереться на имеющуюся базу для органиченного и относительно незаметного введения нового понятия.
Методика репетитора математики.
Обычно я объясняю так: Для того, чтобы точнее измерить часть целого предмета его приходится разрезать на очень большое количество мелких кусочков. Поэтому в знаменателях появляются большие числа и часто там располагается 100.
Математикам надоело выводить одни и те же нули с единицей в записи таких дробей, рисовать черту и прыгать из числителя в знаменатель. Проще вести записи в строчку. Поэтому договорились не писать вообще сотню совсем, а вместо нее указывать знак %.
Математикам надоело выводить одни и те же нули с единицей в записи таких дробей, рисовать черту и прыгать из числителя в знаменатель. Проще вести записи в строчку. Поэтому договорились не писать вообще сотню совсем, а вместо нее указывать знак %.
Что такое знак процента? Та же единичка и два нуля, только переставленные. Например, запись 35% — ни что иное, как условное обозначение дроби . Поэтому, как только мы увидим в задаче число со знаком %, мы сразу же переведем его в привычную дробь. И всё.
При таком подходе к процентам репетитор по математике уводит их в тему «задачи на части». Можно не находить 1 процент в явном виде, а пользоваться приемами нахождения части от целого (и целого по части) через выполнения двух операций в одну строчку: делим на знаменатель и умножаем на числитель (или наоборот: делим на числитель и умножаем на знаменатель). Репетитор проводит несколько занятий на отработку этого правила. Оформление в краткой записи обычно такое:
Если навык нахождения частей имеется – ребенку не составит труда какое-то время поработать с процентами без дополнительных объяснений репетитора. Краткая запись аналогичной задачи не меняется и на новом материале успешно закрепляется старый: В магазин привезли 200кг фруктов, а продали 35% всех фруктов. сколько килограммов фруктов продали.
Минимальная логическая нагрузка будет этому только содействовать. Вычислительный опыт позволит не только запомнить назначение знака % , но и «почувствовать» проценты, научиться соизмерять величины. Например, вряд ли в ответе задачи при нахождении 35% от 200г ученик напишет число большее, чем 200.
В 6 классе я рекомендую рядом с колонкой для частей добавлять колонку для процентной записи. В той же задаче это выглядело бы вот так:
Такой вид краткой записи поможет репетитору по математике представить перед учеником полную картину всех измерений величин. Это важно для сложных задач. Если какая-нибудь величина оказывается равной сумме других, то найти ее можно выполняя сложение как в процентах, так и в частях.
Единственная проблема, которая может возникнуть у репетитора математики в 5 классе, связана с нахождением количества самих процентов. Например: в магазин завезли 200кг картофеля, а продали 40кг. Сколько процентов привезенного картофеля продали?
Без прямого нахождения веса 1% (или без чертежа с долями) репетитор не сможет объяснить, что = 20%, так как тему «отношения» и «сокращание дробей» проходят только в 6 классе.
В работе со слабым учеником репетитор математики иногда вынужден жертвовать отдельными частями материала и идти на компромисс между программными требованиями и возможностями конкретного ученика. В таком случае уверенное выполнение часто используемых операций более важно, чем полный охват материала. Задач на поиск самих процентов не так много. В 6 классе тема будет изучена более полно и широко – там и развернемся. А в 5 классе (если репетитор по математике занят слабым учеником) я бы советовала убрать тему из программы. Лучше иметь синицу в руках, чем журавля в небе.
Надо сказать, что описанный метод не является панацеей для преподавателя на все случаи обращений к нему, более того, он не является наилучшим и перспективным с точки зрения развития ученика. Все-таки методика с долями и частями на рисунках, схемах, с выделением 1 процента как отдельного персонажа является более предпочтительной, но требуют других временных условий и большего мастерства репетитора по математике в плане аккуратности и точности словесного описания этих рисунков.
Подбор арифметических действий в таком случае оказывается более запутанным и их туманным. Приходится рассчитывать на способность ребенка моделировать математические процессы в уме или на бумаге, выделять общие правила их измерений и применять свойства одних объектов к другим. Определенная вариативность (для некоторых учеников) идет только на пользу, ибо представляет собой весьма эффективное средство для активизации мышления. Ребенок ставится в условия, когда он вынужден думать и каждый раз вспоминить что же такое процент. Если репетитор видит неспособность вести такую деятельность – приходится использовать прием кратких записей.
Комментариев нет:
Отправить комментарий